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An attempt is made to obtain a conformally invariant gravitational wave 
equation in an isotropic background universe by modifying the Einstein field 
equation through a correction term proposed in the Hilbert Lagrangian in the 
form of a series of finite terms in R ( = g,k Rik)" It is shown that only those 
waves which are described by Bessel function J0(mrl) in curved background can 
be transformed as classically periodic waves in flat background [without restrict- 
ing the scale factor a(r/)]. 

1. I N T R O D U C T I O N  

It has been known already for a long time that some basic equations of 
theoretical physics, among  them the equations for massless fields, are 
invariant with respect to the group Cg of  conformal  mapping  (Fulton et al., 
1962), the replacement of g ,, and field variable q,~a...~ according to the rule 
- _ e - 2 O  - _ e - ~  i ) ,~ ,~ . . . . .  where s is the spin of the field. For  g ~  - g~., q'~a- - -,, - 
instance, the field equations for massless fields (with the well-known excep- 
tion of the scalar, for which [] q~ + (R / 6 )q ,  is conformally invariant, and not 
[]  q~ = 0), remains unchanged under  Cg. It is impor tant  to notice that the 
field variables t ransform with different powers of  the conformal  factor 82o, 
depending on the spin of  the field. For  the scalar field, ~ = e-~ and for 
the Maxwell field equations (s = 1), A-~ = A~ or .P~ = F~I ~. In the case of the 
gravitational field (s = 2), the conformal  invariance is usually referred to the 
vacuum Bianchi identities with the Weyl tensor being the appropriate  
conformally  invariant quantity. 

Conformal  symmetry  of the field equations with respect to Cg is 
impor tant  f rom the physical point  of view since it restricts the coupling of 
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the physical system to the external gravitational field. For example, in 
electromagnetism it allows minimal coupling of the form (3~ - eA~) but not 
Pauli coupling of the form ~a~'F~,,~. The role of conformal invariance in 
the context of quantum field theory in curved space-time has been em- 
phasized many times (Parker, 1969; Zel'dovich and Novikov, 1975). 

Now, the Einstein field equations 

(1) 

derivable from the Hilbert action 

.4 = f Rv~-- g a4x + x ~, f m,as (2) 
i 

predict the existence of gravitational waves in weak field approximation. 
Weak gravitational waves belong to the class of weak gravitational 

fields, which can be regarded as given or imbedded in a flat background like 
other physical fields. Therefore, the metric everywhere in the considered 
region of space-time is taken to differ little from the Minkowski metric ~,,, 
that is, g.~ = ~.~ + h.~, where ]h~,. ] << 1. This is not a conformally invariant 
transformation. 

The vacuum Einstein equations reduce to the wave equation 

(o) 

h~,,~,; ~ - 2 R. . . r  h "~ = 0 (3) 

in linear approximation. Here the correction h~,~ satisfies the gauge condi- 
(o) 

tions h0o = h o . = 0 ,  and R. . . r  is the Riemann tensor corresponding to 
(o) 

background metric g.~. 
The gravitational field of a nonstationary isotropic universe is de- 

scribed by the metric 

ds 2= - g ~ , . d x ~ ' d x " = a 2 ( ~ ) ( d ~ 2 - d x 2 - d y 2 - d z  2) (4) 

(written in the conformally flat form) where ~/is related to the cosmic time t 
by the relation c dt = a(~)d~l. Weak gravitational waves on the background 
of this metric are given by (Grishchuk, 1975, 1977) 

hki"+ 2 a' hki, + a2_tmh k a ~ ',,,m = 0 ( 5 )  
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where the prime denotes the derivative with respect to ,/ and the comma 
denotes the derivative with respect to spatial coordinates. Further, the wave 
correction to the metric can be represented in the form of a sum of terms 
(Lifshitz, 1946) 

_ t tGk hk-- a ' (6) 

where G~* is a tensor eigenfunction numbered m so the Laplace operator 
formed from the metric dl 2 = dx 2 + @2 + dz 2. Then, from (5) we obtain 

/x"+ ~(rn 2 -- a " / a )  = 0 (7) 

The effective potential a " / a  in (7), distinguishes this equation from the 
ordinary wave equations in the Minkowski world. The fact that a " / a  ~ 0 
(save for a = const, and a = a0*/) is a manifestation of the so-called confor- 
mal noninvariance of gravitational wave equations. 

The analogy between electromagnetism and gravitation begins with the 
inverse square laws of Coulomb and Newton, but does not hold in equation 
(7). Therefore it is interesting to investigate whether the equation (7) can be 
put on a par with electromagnetic waves so far as their conformal invariance 
is concerned. 

That is the purpose of this paper. 
Since the gravitational waves are an inescapable consequence of the 

Einstein theory, it is necessary to alter the Einstein field equations in order 
to alter the gravitational wave equations. Or, to obtain a conformally 
invariant Hilbert Lagrangian without associating it with any field other than 
gravitation. For instance, many authors have suggested replacing the Hilbert 
Lagrangian (not conformally flat) with the Lagrangian [g~'q~q,,,+ 
(R/6)q,2], which is conformally invariant. But this involves an extra mass- 
less scalar field which leads to the consequences like variant gravitational 
constant. 

Here we attempt to achieve conformal invariance without introducing 
an extra field. 

2. MODIFIED FIELD EQUATIONS 

Over the years alternative theories have been postulated. For example, 
Weyl (1922) suggested the invariant R 2 to make the field action scale 
invariant (and to unify gravitation with electromagnetism), and another 
attractive alternative suggested is R 3/2 so that the coupling constant in 
matter Lagrangian is dimensionless. Breizman et al. (1971) studied the 
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behavior of homogeneous isotropic universes whose underlying Lagrangian 
density depends on R" (here n is a numerical constant), and Nariai (1973) 
considered this action in studying the problem of gravitational instability in 
an expanding universe. Also, quantum considerations led people to consider 
invariants like R~kR ik, R 2, and their combinations. 

Weyl's theory (a conformally invariant theory) using R 2 has a bad 
long-range behavior as it does not reduce to Newtonian theory in the 
linearized limit. So we think the above combinations cannot serve the 
purpose. We want something to nullify the manifestation of gravitation, as 
evident from equation (7), without a special choice of the scale factor a(v/). 
So we propose to consider the Lagrangian density in the form (Pandey, 
1978) 

(--7[ (r-R 1" R- g c , , - -  (8) 
,, = 2 612 

where (7, are arbitrary coefficients corresponding to n, and l is a characteris- 
tic length. The characteristic radii of curvature of the background world are 
to be large compared with the gravitational wavelength. 

Usually (see for example, Sokolov, 1976, who considers higher-order 
terms in R) one writes different coupling constants for each term; for 
instance, aR-+-fiR 2 +yR~kR ik. This leads to confusion in analyzing the 
predictions of the theory. But here only one coupling constant (as in the 
Hilbert case) enters all the terms. The arbitrary coefficients (7,, are dimen- 
sionless, and are introduced to cancel out the gravitational manifestation. In 
other words, C,, are to be determined so as to reduce to zero the additional 
potential in the gravitational wave equations without imposing any restric- 
tion on the scale factor a(rl), when we change the background metric from 
curved space-time to flat space-time to obtain a conformally invariant 
gravitational wave equation. 

An application of the variational principle to the action 

a=f((eg/ )+e,)d4x 
where l~g is given by (8), and gs stands for the source Lagrangian density, 
gives the equations of the "modified field theory" as 

N ?lCn 
c., ,-  E -g-(t2R) ~ 

n =  2 

• L ]R~,,- 
1 

~ng~R --(n --1)(R;m ,,-  g ~  g ) /g  

--(n -- 1)(n --2)( R;~,R:~ -- g~,~R: ,,R" " ) / R  2] = ~Lv (9) 
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Here 

8~s =(=7 8g " (10) 

stands for the energy momentum tensor responsible for the production of 
the gravitational potential &,.. It can easily be seen that 

T~,, = 0 (11) 

holds for (9), as in general relativity. 
It is evident that modified field equations (9) reduce to Einstein field 

N 2 equations (1) in the absence of the correction term ~,,,=2C,,(l R)"/6l 2 in (8). 
This term has resulted in appearance of terms involving ~.,,=2nC,,(IN 2R),,- ~/6, 
in equation (9). 

3. GRAVITATIONAL WAVES 

As in the case of Einstein, the gravitational wave equations for the field 
equations (9) of the modified field theory can be obtained under weak-field 
approximation. The wave correction h~,~ satisfies as usual the gauge condi- 
tions (h0o = ho, ~ = 0), and is expressed as the sum of terms like h~ = v(~)G~ 
(Lifshitz, 1946). Then, we obtain in the modified theory the equation for 
P a s  

where 

At I 2 
= 0  (12) 

A = I -  E - T - 
n = 2 

The number m indicates the spatial periodicity of the wave. Thus, equation 
(12) is the gravitational wave equation on the background metric (4) 
corresponding to the field equations (9). The equation (12) differs from the 
corresponding one in Einstein's theory in having an additional term A'/A in 
the coefficient of v'. This additional term is the result of modification of 
Einstein theory, based on the Lagrangian density (8). However, this term is 
of small magnitude as the quantities (l/a) and (a"/a) in the expression 
(13) of A are obviously less than unity. 

Further, it is easy to see that in case of a flat 3-space, any wave 
corresponding to any m 4= 0, is of very short wavelength as the radius of 
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curvature of the background space is infinite. Now, in the following section, 
we study how this wave equation (12) transforms itself as we go from curved 
space-time (4) to Minkowski space-time. 

4. CONFORMAL INVARIANCE 

The wave equation (12) depends on the scale factor a(~) and also on 
the arbitrary coefficients C,,. The former, however, is determined by the 
matter filling the universe, and by its equation of state. As mentioned in the 
above, we do not prescribe any restriction on a(~), and therefore, make use 
of arbitrary coefficients C,, in nullifying the additional potential in the 
gravitational wave equation (12). 

Consider the transformation 

= av~l~ (14) 

This reduces (12) to 

.,,+.[.,2 = o  (15) 

Equation (15) is of the form of Schr6dinger equation. Therefore, ]/~12 can be 
interpreted as being proportional to the energy density of the wave. How- 
ever, it should be noted that the correction introduced in the Hilbert 
Lagrangian to modify the Einstein theory, has appeared in the wave 
equation (1 5) in the form of an effective potential given by 

( a fA  )" a" a'A' A" A '2 
- -  - + + - -  ( 1 6 )  

U(~) = afA- a ~ 2A 4A 2 

The first term of (16) is as in the case of Einstein field equations, and the 
other three terms are the consequence of modification of Einstein theory. 
We therefore have the possibility of nullifying the first term of (16) by its 
remaining three terms without imposing any restriction on the scale factor 
a(~) through the proper choice of the arbitrary coefficients C,,. If so, 
U(71) = 0, and (15) then reduces to the usual Schr0dinger equation in a flat 
background. Thus, demanding U(~) ~ 0, at any given value of ~, say, To (77o 
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can be taken at the start of the expansion of the universe), we obtain 

k ( 7 -  ~/0) = f (7o)  + f ' ( 7 o ) ( 7 -  70) + f " ( 7 ~  (7-T/0)z  + . . .  (17) 

where k is a constant, and f(7) =- a 2A. 
Comparing the coefficients of various powers of ( 7 -  vl0) in (17), the 

values of the arbitrary coefficients C,, can be obtained by solving N 
simultaneous equations. These values of C,, are "suitable," and when used in 
the field equations (9), will result in eliminating U(7) in equation (15). 
Further it should be noted that in the modified theory, the amplitude of the 
gravitational wave will be f A  times the amplitude of the gravitational wave 
in the Einstein theory, that is, 

v*=v~-A (18) 

The first and second terms on the fight-hand side of equation (17) 
correspond to two special cases of the scale factor, namely, a = const, and 
a = ao7. In these two cases one does get a conformally invariant gravita- 
tional wave equation even from the Einstein field equations. The former 
corresponds to a flat background metric, and the latter to a universe in 
which the matter is filled with the equation of state p = ~/3 (that is, near 
singularity in Friedmann cosmological model). The higher-order terms in 
(17) are due to the correction introduced in the Hilbert Lagrangian density. 

Now we consider the impact of reducing U(7) = 0, on the gravitational 
wave equation (12), which are obtained in linear approximation of the field 
equations (9) in an isotropic background universe (4). We find that 

2a'/a + A'/A = 1 / (7  - 7o) (19) 

Using (19) in (12), we obtain a Bessel-type equation 

( 7  - 70)2 " + ( 7  - , , , 2 ( 7  - 7 0 ) 2 .  = 0 (20) 

The equation (20) throws light on the shape of gravitational waves, and also 
on their variations in the modified theory when the curved background 
[where it is described by Jo(mT), which is a solution of (20)] is changed to a 
flat background metric (where it is described by the usual periodic wave) or 
vice versa. 
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5. D I S C U S S I O N  

It seems that one is left with two options, though each of them looks 
interesting. One of them is to agree that (14) is valid, and the other is its 
contrary. In the former case, we obtain the modified gravitational wave 
equations conformally invariant as the electromagnetic wave equations. As 
the conformal invariance preserves angle and phase (only lengths are 
altered), helicity should be preserved. And this is what we achieve in (14) 
through (18). Thus, we do not violate the spin (s = 2) of gravitation in a flat 
background; instead we modify slightly the amplitude of the gravitational 
waves to I,*. As a consequence of this the structure of the gravitational 
waves in a curved background (4) is modified to a wave represented by the 
Bessel function Jo(mr/), from the usually classical periodic wave in a flat 
background. As such the modification in the amplitude of the wave in this 
modified field theory seems quite natural. 

On the other hand, the latter case leads to the fact that any modifica- 
tion of Einstein theory based on scalar R =-- gikR ik, in its linearized version 
cannot yield a conformally invariant gravitational wave equation in an 
isotropic background universe. This means that on both classical and 
quantum levels, gravitons behave drastically differently from other massless 
particles. For instance, unlike photons, gravitons are coupled to one another. 
Classically, in a nonstationary isotropic gravitational field, particularly in 
the strong gravitational field of the early universe, gravitational waves can 
be amplified (because in this case they are not conformally invariant), and 
hence gravitons can be created (in the quantum sense). 

Moreover, the field equation of the modified theory (9) involves terms 
like [ 3 R / R  and R : , R : i / R  2, which are obtained in the quantum theory of 
gravitation owing to renormalization of the stress tensor. Anomalies in the 
stress tensor are also known to involve such terms. Thus equation (9) may 
be a more natural choice for considering quantum gravitational processes in 
the early universe. 
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